

KI Overview

- Combines the two Keck telescopes as an Interferometer
 - Adaptive Optics (AO) on both telescopes
 - 2.2 um active fringe tracking
 - Lots of other active systems
- H & K band fringe visibility mode
 - High sensitivity measurements of planet-forming regions
 - Observations of a range of astrophysical objects
- 10 um nulling mode
 - Measure exozodiacal dust around nearby main sequence stars
 - » Improve on current SED measurements
 - » Support science planning for future exoplanet missions

Observing Modes

- V2 mode has been routinely available to the community since 2004
- Nuller has recently completed its development & validation, including shared-risk-science observations
- Nuller begins its Key Science program this month. Key Science team Pl's:
 - Gene Serabyn, JPL
 - Phil Hinz, Univ. of Arizona
 - Marc Kuchner, GSFC
- First shared-risk nuller science paper on observations of Nova RS Oph just accepted
 - R. K. Barry et al. "Milliarcsecond N-Band Observations of the Nova RS Ophiuchi,"2008, ApJ, accepted [arXiv:0801.4165]

Nuller Concept

- Two problems
 - Bright star
 - Bright background
- Approach: 4 beam interferometer
 - Split each Keck pupil into L and R halves
 - Null star on the two 85 m baselines (K1L+K2L; K1R+K2R) to improve the exozodi-to-star ratio (no SNR gain for ground-based obs.)
 - Combine and demodulate the nulled outputs on the short 4.1 m baseline
 - » Interferometric chopping to measure the nulled signal in a large background

K1 in Interferometry basement K2 in

Long delay lines

Beam combiners

Fast delay lines

Switchyard

See virtual tour at planetquest.jpl.nasa.gov/Keck

Fast delay line area

KALI Nuller Stimulus

KAT

FATCAT

Nuller Breadboard

Beam combiner area

Observing scenario

Nulling

- Measure science target with interleaved calibrators
- From calibrators, compute "system leakage", i.e., 1 / Null Depth
- Calibrated Leakage is L_{science} – L_{system}
 - Accuracy of this quantity is key performance metric
- Analogous to V2 ops scenario

Everything degrades the null

error budget terms for 1% leakage

	Differential OPD (windowed)	$L = \frac{1}{4} \sigma_{\phi 1 - \phi 2}^{2}$	300	(nm rms)
2	Intensity balance	$L = \frac{1}{4}[1-4l_1l_2/(l_1+l_2)^2]$	50.0%	
3	Intensity fluctuations	$L = 1/8 \sigma_{Ii}^2$	28.0%	σ _{Ii} , total I rms each arm (%)
4	Pure image rotation	$L = \frac{1}{4} \theta^2$	12	$_{ heta}$, rotation (deg)
	Static tilt with diff-limited det. Pinhole	$L \cong 0.4 \text{ (tp)}^2$	0.160	t, total vector tilt <i>difference</i> (waves)
	Dynamic tilt w/ diff-limited det. pinhole	$L \cong 0.4 \text{ (tp)}^2$	0.160	t, total vector tilt difference (waves)
	Ordinary shear with diff- limited det. pinhole	L ~ 0.4 s' ²	0.160	s', relative shear (frac of beam diameter)
	Focus + astigX,Y w/ diff- limited det. pinhole	$L\cong 3\ w^2$	0.058	w, total rms phase difference in those modes (waves)
	Coma (4 terms) w/ diff- limited det. pinhole	$L\cong 0.8 \text{ w}^2$	0.110	w, total rms phase difference in those modes (waves)
	Amplitude curvature across pupil	L= $(1/48)^*(\Delta)^2$	0.700	Δ, peak I mismatch (%)
5	Pure s-p phase shift	$L = 1/16 \phi^2$	23	ф (deg) 10

Dealing with the error budget

- Symmetry
 - Nuller beam combiner design
 - Beamtrain
 - » Coatings, rotation, etc.
- Spatial filtering
 - Camera has a 1.4 λ / D pinhole (+ other selections)
- Pointing and shear
 - Flux peak on bright star before each cluster
 - Automatic shear adjust for each star
- Cophasing
 - 300 nm rms needed for 1% leakage
 - Atmospheric moves 300 nm in 10 ms
 - 10 um sources don't have enough SNR in 10 ms for compensation
 - » Use 2 um system for fast tracking
 - Uses feedback control for the Fringe Tracker
 - Uses feedforward control to the Nuller
 - » Use 10 um system for slow tracking

Laser metrology and accelerometers

- External metrology
 - Measures common mode pathlengths from basement to telescope – 4 systems
- Internal metrology
 - Measures non-common mode pathlengths from fringe tracker and nuller to wavelength split – 4 differential systems
- Delay line metrology
 - Local delay line servo control 8 systems
- Telescope accelerometers 15 per telescope
- Implemented transparently to the fringe tracker and nuller

10 um starlight control loops

Multiplexing

- Laser metrology + 2 um fringe tracking + 10 um fringe tracking all simultaneous via WDM
 - Nuller is more problematic
 - » 1 wavelength, 1 camera: 3 fringe trackers
- A second issue total flux calibration
 - $-V^2$
 - » Measure fringe power N²V²
 - » Measure total flux N
 - » Compute normalized V²
 - Nulling
 - » Measure coherent "null" power NL with both MMZs at Null
 - How to get N?
 - » Best approach for us is to measure coherent "peak" power with both MMZs at peak
- Leads to time-multiplexed sequence

This is the acquisition-mode sequence. The science-mode sequence spends more time at null, disables the spatial choppers, and servos the long baselines to directly minimize the null leakage